L. Acosta, X. Espuña, J. A. Sanchez-Espigares

Industrial production of dry-cured hams involves three stages: reception and salting, post-salting, and drying maturation. We focus on the salting phase, essential for determining final salt content and reducing variability between pieces. We built a predictive linear mixed model (LMM) based on non-invasive X-ray measurements and longitudinal data to optimize salting duration and achieve a target salt percentage; salt reduction aligns with WHO recommendations. The LMM can be implemented directly on the production line, enabling autonomous decision-making based on data, following Industry 4.0 principles. The classical system determines salting time based on ham weight (1 day/kg), while the LMM allows setting a salt target and reduces variability. The classical system results in 0.72% variability, while LMM achieves 0.32%. LMM also achieves a 4.5% average salt without bias, vs. the biased 5.27% in the classical method. Overall, this leads to a more efficient industrial production process

Keywords: Linear mixed model,dry-cured-ham, Salt content, Salting time

Scheduled

Pósters session II
June 13, 2025  3:30 PM
Foyer principal (coffe break)


Other papers in the same session

Predicción de la Rigidez Arterial en Estudios Longitudinales mediante Machine Learning

C. Patino Alonso, M. Gómez Sánchez, L. Gómez Sánchez, S. González Sánchez, C. Agudo Conde

Relación entre biomarcadores inflamatorios y recuperación funcional tras un ictus: el papel protector del RLM

D. L. Tarruella Hernández, A. García Molina, J. B. Salom Sanvalero, M. M. Dolcet Negre, M. J. Rivas Lopez

TUGlabR, an R package for coalitional games

Á. de Prado Saborido, M. Mirás Calvo, I. Núñez Lugilde, C. Quinteiro Sandomingo, E. Sánchez Rodríguez

Análisis multivariante de los efectos de la estimulación ambiental en ratones, para la caracterización de la plasticidad hipocampal.

C. A. Ávila-Zarza, S. Sánchez-Monreal, T. Cocho, N. Rodríguez-Iglesias, C. Escudero, L. A. de Castro, J. R. Alonso, J. Valero

Selección de Carteras a través de redes financieras: Un enfoque integrado de causalidad y correlaciones dinámicas

P. Gargallo Valero, L. Lample Gracia, J. Miguel Álvarez, M. Salvador Figueras

TAID: Un Algoritmo de Segmentación para Análisis Complejos en el Sector Bovino Cárnico

M. Anciones Polo, A. Queiruga-Dios, P. Vicente Galindo, E. Benéitez-Andrés, M. Rodríguez-Rosa


Cookie policy

We use cookies in order to be able to identify and authenticate you on the website. They are necessary for the correct functioning of it, and therefore they can not be disabled. If you continue browsing the website, you are agreeing with their acceptance, as well as our Privacy Policy.

Additionally, we use Google Analytics in order to analyze the website traffic. They also use cookies and you can accept or refuse them with the buttons below.

You can read more details about our Cookie Policy and our Privacy Policy.