A. Aneiros-Batista, M. J. Lombardía Cortiña, E. López Vizcaíno, S. A. Sperlich

This study introduces an area-level mixed model, a component of the Fay-Herriot framework, aimed at estimating labor force indicators at province level in Spain. The proposed model extends the traditional univariate approach to generate estimates for labor force and sociodemographic variables of interest, disaggregated by demographic factors. Additionally, a benchmarking process ensures coherence with Hájek direct estimators. The model’s performance is assessed by estimating mean squared errors using parametric bootstrap methods, with estimators obtained through restricted maximum likelihood estimation. To demonstrate its application, labor force survey data are analyzed, showcasing the model's utility in producing reliable estimates. This research forms part of a broader project funded by the Spanish National Institute of Statistics (INE) under the ETD/503/2021 grant, within the framework of Research in Line 7.

Keywords: Area-level mixed model, Fay-Herriot framework, Small area estimation, Labor force survey, Benchmarking.

Scheduled

Small area estimation procedures for the labor force survey
June 12, 2025  5:10 PM
MR 1


Other papers in the same session

Estimación de indicadores laborales en municipios de más de 20.000 habitantes bajo un modelo de unidad multinomial mixto.

M. Bugallo Porto, E. Cabello Garcia, M. D. Esteban Lefler, D. Morales, M. Bugallo Porto, S. Rodríguez Ballesteros

Estimación de totales de ninis en provincias bajo un modelo binomial mixto a nivel de individuo

M. Bugallo Porto, E. Cabello Garcia, M. D. Esteban Lefler, D. Morales, A. Perez Martín, S. Rodríguez Ballesteros

Estimation of National Labor Indicators Using Additive Log-Ratio Transformed Compositional Fay-Herriot Models

M. J. Lombardía Cortiña, A. Aneiros-Batista, E. López Vizcaíno, S. A. Sperlich


Cookie policy

We use cookies in order to be able to identify and authenticate you on the website. They are necessary for the correct functioning of it, and therefore they can not be disabled. If you continue browsing the website, you are agreeing with their acceptance, as well as our Privacy Policy.

Additionally, we use Google Analytics in order to analyze the website traffic. They also use cookies and you can accept or refuse them with the buttons below.

You can read more details about our Cookie Policy and our Privacy Policy.