P. Lacroix, B. Michel, F. Picard, V. Rivoirard

We observe two populations of multivariate data described by p variables, where p is significantly larger than the population sizes. A two-sample test has to be performed to decide between the null hypothesis (the distributions of both populations are equal) and the alternative hypothesis (distributions are different). To take into account the complex structure of variables and overcome the curse of dimensionality problems, data are embedded in a well-chosen Reproducing Kernel Hilbert Space (RKHS).
In our work, we study a test statistic inspired by Harchaoui et al. (2008) generalizing the student t-test in a RKHS, and propose a non-asymptotic and implementable method to calibrate the test. First, through a spectral analysis, a theoretical upper bound of the test quantile is proposed. Second, a data-driven algorithm is implemented satisfying a control of the type I error and including the calibration of the unknown regularization hyperparameter.

Keywords: statistical tests, kernel methods, non-asymptotic, data-dependent calibration.

Scheduled

FENStatS-SEIO: Statistics and Data Science
June 11, 2025  10:30 AM
Auditorio 1. Ricard Vinyes


Other papers in the same session


Cookie policy

We use cookies in order to be able to identify and authenticate you on the website. They are necessary for the correct functioning of it, and therefore they can not be disabled. If you continue browsing the website, you are agreeing with their acceptance, as well as our Privacy Policy.

Additionally, we use Google Analytics in order to analyze the website traffic. They also use cookies and you can accept or refuse them with the buttons below.

You can read more details about our Cookie Policy and our Privacy Policy.