D. Samaniego Vidal, S. Kurz
Every simple game is a monotone Boolean function. For the other direction we just have to exclude the two constant functions. Here we consider simple games with minimum, i.e., simple games with a unique minimal winning vector. We present enumeration formulas for the number of inequivalent simple games with minimum.
Palabras clave: boolean functions, enumerations, monotonic simple games,
Programado
Teoria de Juegos
12 de junio de 2025 19:00
MR 2