J. Rückmann

In this paper, we consider the class of mathematical programs with complementarity constraints (MPCC). Specifically, we focus on strong stability of M- and S-stationary points for MPCC. Kojima introduced this concept for standard nonlinear optimization problems. It refers to several well-posedness properties of the underlying problem. Besides its topological definition, the challenge is to state an algebraic characterization of strong stability. We obtain such a description for S-stationary points whose components of Lagrange vectors corresponding to bi-active constraints do not mutually vanish. We call these points weakly nondegenerate. Moreover, we show that a particular constraint qualification is necessary for strong stability.
This is a joint work with Harald Günzel (RWTH Aachen University, Germany) and Daniel Hernandez Escobar (Uppsala University, Sweden).

Palabras clave: Mathematical programs with complementarity constraints (MPCC), M- and S-stationarity, strong stability, algebraic characterization, Generalized Mangasarian-Fromovitz constraint qualification

Programado

Optimización Continua II
10 de junio de 2025  15:30
MR 3


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.