M. Rodríguez Álvarez, J. Vicente Pérez, J. E. Martínez Legaz

In recent years, different families of convex sets which can be decomposed as the (Minkowski) sum of a bounded convex set and a convex cone have been introduced. In particular, M-decomposable sets are the sum of a compact convex set and a closed convex cone (the corresponding recession cone), being polyhedral convex sets a subclass of this family of closed convex sets. More recently, the class of e-polyhedra (the solution sets of finite linear systems containing strict inequalities) was studied and it was proved that any e-polyhedron can be expressed as the sum of an e-polytope (bounded e-polyhedron) and its recession cone. In this talk, we extend this kind of decomposition to the broader class of evenly convex sets, that is, the intersections of families of open half-spaces (Fenchel 1952).

Palabras clave: Convex sets, linear inequality systems

Programado

Optimización Continua II
10 de junio de 2025  15:30
MR 3


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.