I. Willems, J. Beyhum, I. Van Keilegom

In many practical settings, one is interested in studying the time until an event of interest takes place, and therefore, as a first step, collects time-to-event data. A common problem, however, is that the event of interest might not be observed for every subject in the study, leading to incompleteness in the resulting data. This caveat is called censoring, and it greatly complicates the analyses.
Survival analysis is a branch of statistics that is devoted to the study of censored data, and, despite being widely studied, continues to hold many challenges. In this presentation, we start by introducing these challenges and proceed by giving an overview of recent advancements in the field, focusing on contributions by Belgian researchers. In doing so, we explore the intersection of survival analysis with other fields of statistics, including quantile regression, causal inference, and dependence modeling. The last part of the talk focuses on the presenter’s own research.

Palabras clave: Survival analysis

Programado

FENStatS-SEIO: Statistics and Data Science
11 de junio de 2025  10:30
Auditorio 1. Ricard Vinyes


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.