A. Guerrero Portoles, M. Escoto Gomar, A. A. Juan, Á. García Sánchez, W. Chen

The Team Orienteering Problem (TOP) is a well-established combinatorial optimization problem with applications in logistics, tourism, and other domains. Traditional solutions often rely on heuristics, metaheuristics, or exact algorithms, but deep learning-based approaches are emerging as promising alternatives. This study explores the use of Decision Transformers (DT)—a reinforcement learning framework based on sequence modeling—to generate high-quality solutions for the TOP. By utilizing a dataset of diverse routes with varying quality levels, the objective is for the DT to learn to predict effective action sequences that maximize the reward.

Palabras clave: Team Orienteering Problem (TOP), Combinatorial Optimization, Decision Transformers (DT), Reinforcement Learning

Programado

Métodos y aplicaciones de la IO II
13 de junio de 2025  09:00
Sala de prensa (MR 13)


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.